How quickly does salt raise blood pressure

Salt has long been vilified as the harbinger of hypertension. However, as research into the condition has delved deeper, it is becoming clear that the story is more complex. The latest study in this arena goes some way toward absolving sodium.

Following a raft of large-scale studies showing that a high salt intake leads to high blood pressure, the Dietary Guidelines for Americans set the recommended sodium intake at 2,300 milligrams per day.

However, a new batch of studies are bringing this guideline into question, and researchers are now asking whether the relationship between hypertension and salt is so clear cut.

The latest research to probe sodium’s role in hypertension is presented today at the Experimental Biology 2017 meeting, taking place in Chicago, IL.

Researcher Lynn L. Moore, an associate professor of medicine at Boston University School of Medicine in Massachusetts, completed the study with her team.

Moore and her team took data from 2,632 men and women aged between 30 and 64 years, who were part of the Framingham Offspring Study – an offshoot of the Framingham Heart Study. All participants had normal blood pressure at the start of the trial.

Over the 16-year follow-up period, the researchers observed that the participants who consumed under 2,500 milligrams of sodium each day had higher blood pressure than those who consumed higher quantities of sodium.

The results seem counterintuitive. As the authors write: “While we expected dietary sodium intake to be positively associated with both SBP [systolic blood pressure] and DBP [diastolic blood pressure], the opposite was found.”

Although the findings appear to kick against the status quo, they are in line with other recent studies asking similar questions. Research has shown that there is a “J-shaped relationship” between cardiovascular risk and sodium. This means that low-sodium diets and very high-sodium diets both carry a higher risk of heart disease.

Many people in the United States sit in the middle of this curve, where the cardiovascular risk is at its lowest.

We saw no evidence that a diet lower in sodium had any long-term beneficial effects on blood pressure. Our findings add to growing evidence that current recommendations for sodium intake may be misguided.”

Lynn L. Moore

The importance of dietary potassium is also underlined in this study. The team found that individuals with the lowest blood pressure were those who had the highest intake of sodium and potassium. Conversely, those with the highest blood pressure had the lowest intake of sodium and potassium.

Moore says: “This study and others point to the importance of higher potassium intakes, in particular, on blood pressure and probably cardiovascular outcomes as well.”

Similar effects were also seen when magnesium and calcium intakes were analysed; higher levels were linked to lower blood pressure, and vice versa.

The authors conclude that:

These long-term data from the Framingham Study provide no support for lowering sodium intakes among healthy adults to below 2.3 grams per day as recommended. This study does support the finding of a clear inverse association between potassium, magnesium, and calcium and blood pressure change over time.”

Moore wants her study to play a part in shifting dietary decisions throughout the U.S. She says: “I hope that this research will help refocus the current Dietary Guidelines for Americans on the importance of increasing intakes of foods rich in potassium, calcium, and magnesium for the purpose of maintaining a healthy blood pressure.”

Moore also makes it clear that there may be certain people who are particularly sensitive to sodium and who might, therefore, benefit from reducing salt in their diet. Perhaps in the future, methods of screening for salt sensitivity might help to establish which individuals need to be more careful.

As more studies conclude that sodium’s role in hypertension is less vital than once thought, dietary recommendations are sure to change in line with the findings. This changing field of nutrition science is one to watch.

Learn why potassium is as important as sodium for healthy blood pressure.

1. Intersalt Cooperative Research Group An international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ. 1988;297:319–328. doi: 10.1136/bmj.297.6644.319. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Mente A., O’Donnell M.J., Rangarajan S., McQueen M.J., Poirier P., Wielgosz A., Morrison H., Li W., Wang X., Di C., et al. Association of urinary sodium and potassium excretion with blood pressure. N. Engl. J. Med. 2014;371:601–611. doi: 10.1056/NEJMoa1311989. [PubMed] [CrossRef] [Google Scholar]

3. He F.J., MacGregor G.A. Effect of modest salt reduction on blood pressure: A meta-analysis of randomized trials. Implications for public health. J. Hum. Hypertens. 2002;16:761–770. doi: 10.1038/sj.jhh.1001459. [PubMed] [CrossRef] [Google Scholar]

4. Denton D., Weisinger R., Mundy N.I., Wickings E.J., Dixson A., Moisson P., Pingard A.M., Shade R., Carey D., Ardaillou R., et al. The effect of increased salt intake on blood pressure of chimpanzees. Nat. Med. 1995;1:1009–1016. doi: 10.1038/nm1095-1009. [PubMed] [CrossRef] [Google Scholar]

5. World Health Organization . Guideline: Sodium Intake for Adults and Children. World Health Organization; Geneva, Switzerland: 2012. [Google Scholar]

6. Weinberger M.H. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27:481–490. doi: 10.1161/01.HYP.27.3.481. [PubMed] [CrossRef] [Google Scholar]

7. Strazzullo P., D’Elia L., Kandala N.B., Cappuccio F.P. Salt intake, stroke, and cardiovascular disease: Meta-analysis of prospective studies. BMJ. 2009;339:b4567. doi: 10.1136/bmj.b4567. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. Whelton P.K., He J. Health effects of sodium and potassium in humans. Curr. Opin. Lipidol. 2014;25:75–79. doi: 10.1097/MOL.0000000000000033. [PubMed] [CrossRef] [Google Scholar]

9. He F.J., Li J., Macgregor G.A. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ. 2013;346:f1325. doi: 10.1136/bmj.f1325. [PubMed] [CrossRef] [Google Scholar]

10. Girardin E., Caverzasio J., Iwai J., Bonjour J.P., Muller A.F., Grandchamp A. Pressure natriuresis in isolated kidneys from hypertension-prone and hypertension-resistant rats (Dahl rats) Kidney Int. 1980;18:10–19. doi: 10.1038/ki.1980.105. [PubMed] [CrossRef] [Google Scholar]

11. Dajnowiec D., Langille B.L. Arterial adaptations to chronic changes in haemodynamic function: Coupling vasomotor tone to structural remodelling. Clin. Sci. 2007;113:15–23. doi: 10.1042/CS20060337. [PubMed] [CrossRef] [Google Scholar]

12. Dumont O., Pinaud F., Guihot A.L., Baufreton C., Loufrani L., Henrion D. Alteration in flow (shear stress)-induced remodelling in rat resistance arteries with aging: Improvement by a treatment with hydralazine. Cardiovasc. Res. 2008;77:600–608. doi: 10.1093/cvr/cvm055. [PubMed] [CrossRef] [Google Scholar]

13. Marketou M.E., Maragkoudakis S., Anastasiou I., Nakou H., Plataki M., Vardas P.E., Parthenakis F.I. Salt-induced effects on microvascular function: A critical factor in hypertension mediated organ damage. J. Clin. Hypertens. 2019;21:749–757. doi: 10.1111/jch.13535. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Kurtz T.W., DiCarlo S.E., Pravenec M., Morris R.C., Jr. The American Heart association scientific statement on salt sensitivity of blood pressure: Prompting consideration of alternative conceptual frameworks for the pathogenesis of salt sensitivity? J. Hypertens. 2017;35:2214–2225. doi: 10.1097/HJH.0000000000001458. [PubMed] [CrossRef] [Google Scholar]

15. Elijovich F., Weinberger M.H., Anderson C.A., Appel L.J., Bursztyn M., Cook N.R., Dart R.A., Newton-Cheh C.H., Sacks F.M., Laffer C.L., et al. Salt sensitivity of blood pressure: A scientific statement from the american heart association. Hypertension. 2016;68:e7–e46. doi: 10.1161/HYP.0000000000000047. [PubMed] [CrossRef] [Google Scholar]

16. Thomas M.C., Moran J., Forsblom C., Harjutsalo V., Thorn L., Ahola A., Waden J., Tolonen N., Saraheimo M., Gordin D., et al. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care. 2011;34:861–866. doi: 10.2337/dc10-1722. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Saulnier P.J., Gand E., Hadjadj S., Group S.S. Sodium and cardiovascular disease. N. Engl. J. Med. 2014;371:2135–2136. doi: 10.1056/NEJMc1412113. [PubMed] [CrossRef] [Google Scholar]

18. O’Donnell M., Mente A., Rangarajan S., McQueen M.J., Wang X., Liu L., Yan H., Lee S.F., Mony P., Devanath A., et al. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N. Engl. J. Med. 2014;371:612–623. doi: 10.1056/NEJMoa1311889. [PubMed] [CrossRef] [Google Scholar]

19. Mente A., O’Donnell M., Rangarajan S., Dagenais G., Lear S., McQueen M., Diaz R., Avezum A., Lopez-Jaramillo P., Lanas F., et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: A pooled analysis of data from four studies. Lancet. 2016;388:465–475. doi: 10.1016/S0140-6736(16)30467-6. [PubMed] [CrossRef] [Google Scholar]

20. Graudal N., Jurgens G., Baslund B., Alderman M.H. Compared with usual sodium intake, low- and excessive-sodium diets are associated with increased mortality: A meta-analysis. Am. J. Hypertens. 2014;27:1129–1137. doi: 10.1093/ajh/hpu028. [PubMed] [CrossRef] [Google Scholar]

21. Catanozi S., Rocha J.C., Passarelli M., Guzzo M.L., Alves C., Furukawa L.N., Nunes V.S., Nakandakare E.R., Heimann J.C., Quintao E.C. Dietary sodium chloride restriction enhances aortic wall lipid storage and raises plasma lipid concentration in LDL receptor knockout mice. J. Lipid Res. 2003;44:727–732. doi: 10.1194/jlr.M200330-JLR200. [PubMed] [CrossRef] [Google Scholar]

22. Graudal N.A., Galloe A.M., Garred P. Effects of sodium restriction on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride: A meta-analysis. JAMA. 1998;279:1383–1391. doi: 10.1001/jama.279.17.1383. [PubMed] [CrossRef] [Google Scholar]

23. Brunner H.R., Laragh J.H., Baer L., Newton M.A., Goodwin F.T., Krakoff L.R., Bard R.H., Buhler F.R. Essential hypertension: Renin and aldosterone, heart attack and stroke. N. Engl. J. Med. 1972;286:441–449. doi: 10.1056/NEJM197203022860901. [PubMed] [CrossRef] [Google Scholar]

24. Grassi G., Dell’Oro R., Seravalle G., Foglia G., Trevano F.Q., Mancia G. Short- and long-term neuroadrenergic effects of moderate dietary sodium restriction in essential hypertension. Circulation. 2002;106:1957–1961. doi: 10.1161/01.CIR.0000033519.45615.C7. [PubMed] [CrossRef] [Google Scholar]

25. Petrie J.R., Morris A.D., Minamisawa K., Hilditch T.E., Elliott H.L., Small M., McConnell J. Dietary sodium restriction impairs insulin sensitivity in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 1998;83:1552–1557. doi: 10.1210/jc.83.5.1552. [PubMed] [CrossRef] [Google Scholar]

26. Garg R., Williams G.H., Hurwitz S., Brown N.J., Hopkins P.N., Adler G.K. Low-salt diet increases insulin resistance in healthy subjects. Metabolism. 2011;60:965–968. doi: 10.1016/j.metabol.2010.09.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Nakandakare E.R., Charf A.M., Santos F.C., Nunes V.S., Ortega K., Lottenberg A.M., Mion D., Jr., Nakano T., Nakajima K., D’Amico E.A., et al. Dietary salt restriction increases plasma lipoprotein and inflammatory marker concentrations in hypertensive patients. Atherosclerosis. 2008;200:410–416. doi: 10.1016/j.atherosclerosis.2007.12.034. [PubMed] [CrossRef] [Google Scholar]

28. Grassi G., Cattaneo B.M., Seravalle G., Lanfranchi A., Bolla G., Mancia G. Baroreflex impairment by low sodium diet in mild or moderate essential hypertension. Hypertension. 1997;29:802–807. doi: 10.1161/01.HYP.29.3.802. [PubMed] [CrossRef] [Google Scholar]

29. Cook N.R. Sodium and cardiovascular disease. N. Engl. J. Med. 2014;371:2134. doi: 10.1056/NEJMc1412113. [PubMed] [CrossRef] [Google Scholar]

30. Batuman V. Sodium and cardiovascular disease. N. Engl. J. Med. 2014;371:2134–2135. doi: 10.1056/NEJMc1412113. [PubMed] [CrossRef] [Google Scholar]

31. Hall J.E., Guyton A.C., Coleman T.G., Mizelle H.L., Woods L.L. Regulation of arterial pressure: Role of pressure natriuresis and diuresis. Fed. Proc. 1986;45:2897–2903. [PubMed] [Google Scholar]

32. Rapp J.P., Dene H. Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension. 1985;7:340–349. doi: 10.1161/01.HYP.7.3.340. [PubMed] [CrossRef] [Google Scholar]

33. Kawasaki T., Delea C.S., Bartter F.C., Smith H. The effect of high-sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension. Am. J. Med. 1978;64:193–198. doi: 10.1016/0002-9343(78)90045-1. [PubMed] [CrossRef] [Google Scholar]

34. Weinberger M.H., Miller J.Z., Luft F.C., Grim C.E., Fineberg N.S. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension. 1986;8:II127–II134. doi: 10.1161/01.HYP.8.6_Pt_2.II127. [PubMed] [CrossRef] [Google Scholar]

35. Coruzzi P., Parati G., Brambilla L., Brambilla V., Gualerzi M., Novarini A., Castiglioni P., Di Rienzo M. Effects of salt sensitivity on neural cardiovascular regulation in essential hypertension. Hypertension. 2005;46:1321–1326. doi: 10.1161/01.HYP.0000189183.50301.5c. [PubMed] [CrossRef] [Google Scholar]

36. Castiglioni P., Parati G., Lazzeroni D., Bini M., Faini A., Brambilla L., Brambilla V., Coruzzi P. Hemodynamic and autonomic response to different salt intakes in normotensive individuals. J. Am. Heart Assoc. 2016;5:e003736. doi: 10.1161/JAHA.116.003736. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Galletti F., Ferrara I., Stinga F., Iacone R., Noviello F., Strazzullo P. Evaluation of a rapid protocol for the assessment of salt sensitivity against the blood pressure response to dietary sodium chloride restriction. Am. J. Hypertens. 1997;10:462–466. doi: 10.1016/S0895-7061(96)00491-8. [PubMed] [CrossRef] [Google Scholar]

38. Castiglioni P., Parati G., Brambilla L., Brambilla V., Gualerzi M., Di Rienzo M., Coruzzi P. Detecting sodium-sensitivity in hypertensive patients: Information from 24-hour ambulatory blood pressure monitoring. Hypertension. 2011;57:180–185. doi: 10.1161/HYPERTENSIONAHA.110.158972. [PubMed] [CrossRef] [Google Scholar]

39. Barba G., Galletti F., Cappuccio F.P., Siani A., Venezia A., Versiero M., Della Valle E., Sorrentino P., Tarantino G., Farinaro E., et al. Incidence of hypertension in individuals with different blood pressure salt-sensitivity: Results of a 15-year follow-up study. J. Hypertens. 2007;25:1465–1471. doi: 10.1097/HJH.0b013e3281139ebd. [PubMed] [CrossRef] [Google Scholar]

40. Bihorac A., Tezcan H., Ozener C., Oktay A., Akoglu E. Association between salt sensitivity and target organ damage in essential hypertension. Am. J. Hypertens. 2000;13:864–872. doi: 10.1016/S0895-7061(00)00253-3. [PubMed] [CrossRef] [Google Scholar]

41. Morimoto A., Uzu T., Fujii T., Nishimura M., Kuroda S., Nakamura S., Inenaga T., Kimura G. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet. 1997;350:1734–1737. doi: 10.1016/S0140-6736(97)05189-1. [PubMed] [CrossRef] [Google Scholar]

42. Elliott P., Walker L.L., Little M.P., Blair-West J.R., Shade R.E., Lee D.R., Rouquet P., Leroy E., Jeunemaitre X., Ardaillou R., et al. Change in salt intake affects blood pressure of chimpanzees: Implications for human populations. Circulation. 2007;116:1563–1568. doi: 10.1161/CIRCULATIONAHA.106.675579. [PubMed] [CrossRef] [Google Scholar]

43. Galletti F., Strazzullo P. The blood pressure-salt sensitivity paradigm: Pathophysiologically sound yet of no practical value. Nephrol. Dial. Transplant. 2016;31:1386–1391. doi: 10.1093/ndt/gfw295. [PubMed] [CrossRef] [Google Scholar]

44. Aburto N.J., Ziolkovska A., Hooper L., Elliott P., Cappuccio F.P., Meerpohl J.J. Effect of lower sodium intake on health: Systematic review and meta-analyses. BMJ. 2013;346:f1326. doi: 10.1136/bmj.f1326. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Frohlich E.D. Hemodynamic differences between black patients and white patients with essential hypertension. State of the art lecture. Hypertension. 1990;15:675–680. doi: 10.1161/01.HYP.15.6.675. [PubMed] [CrossRef] [Google Scholar]

46. Wedler B., Brier M.E., Wiersbitzky M., Gruska S., Wolf E., Kallwellis R., Aronoff G.R., Luft F.C. Sodium kinetics in salt-sensitive and salt-resistant normotensive and hypertensive subjects. J. Hypertens. 1992;10:663–669. doi: 10.1097/00004872-199207000-00010. [PubMed] [CrossRef] [Google Scholar]

47. Rocchini A.P., Key J., Bondie D., Chico R., Moorehead C., Katch V., Martin M. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N. Engl. J. Med. 1989;321:580–585. doi: 10.1056/NEJM198908313210905. [PubMed] [CrossRef] [Google Scholar]

48. Strazzullo P., Barbato A., Galletti F., Barba G., Siani A., Iacone R., D’Elia L., Russo O., Versiero M., Farinaro E., et al. Abnormalities of renal sodium handling in the metabolic syndrome. Results of the Olivetti heart study. J. Hypertens. 2006;24:1633–1639. doi: 10.1097/01.hjh.0000239300.48130.07. [PubMed] [CrossRef] [Google Scholar]

49. Barba G., Russo O., Siani A., Iacone R., Farinaro E., Gerardi M.C., Russo P., Della Valle E., Strazzullo P. Plasma leptin and blood pressure in men: Graded association independent of body mass and fat pattern. Obes. Res. 2003;11:160–166. doi: 10.1038/oby.2003.25. [PubMed] [CrossRef] [Google Scholar]

50. Guyton A.C. Blood pressure control—Special role of the kidneys and body fluids. Science. 1991;252:1813–1816. doi: 10.1126/science.2063193. [PubMed] [CrossRef] [Google Scholar]

51. Heer M., Baisch F., Kropp J., Gerzer R., Drummer C. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am. J. Physiol. Physiol. 2000;278:F585–F595. doi: 10.1152/ajprenal.2000.278.4.F585. [PubMed] [CrossRef] [Google Scholar]

52. Titze J., Bauer K., Schafflhuber M., Dietsch P., Lang R., Schwind K.H., Luft F.C., Eckardt K.U., Hilgers K.F. Internal sodium balance in DOCA-salt rats: A body composition study. Am. J. Physiol. Physiol. 2005;289:F793–F802. doi: 10.1152/ajprenal.00096.2005. [PubMed] [CrossRef] [Google Scholar]

53. Laffer C.L., Scott R.C., 3rd, Titze J.M., Luft F.C., Elijovich F. Hemodynamics and salt-and-water balance link sodium storage and vascular dysfunction in salt-sensitive subjects. Hypertension. 2016;68:195–203. doi: 10.1161/HYPERTENSIONAHA.116.07289. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Schmidlin O., Forman A., Leone A., Sebastian A., Morris R.C., Jr. Salt sensitivity in blacks: Evidence that the initial pressor effect of NaCl involves inhibition of vasodilatation by asymmetrical dimethylarginine. Hypertension. 2011;58:380–385. doi: 10.1161/HYPERTENSIONAHA.111.170175. [PubMed] [CrossRef] [Google Scholar]

55. Morris R.C., Jr., Schmidlin O., Sebastian A., Tanaka M., Kurtz T.W. Vasodysfunction that involves renal vasodysfunction, not abnormally increased renal retention of sodium, accounts for the initiation of salt-induced hypertension. Circulation. 2016;133:881–893. doi: 10.1161/CIRCULATIONAHA.115.017923. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Kurtz T.W., DiCarlo S.E., Pravenec M., Schmidlin O., Tanaka M., Morris R.C., Jr. An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension. Kidney Int. 2016;90:965–973. doi: 10.1016/j.kint.2016.05.032. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Bech J.N., Nielsen C.B., Ivarsen P., Jensen K.T., Pedersen E.B. Dietary sodium affects systemic and renal hemodynamic response to NO inhibition in healthy humans. Am. J. Physiol. 1998;274:F914–F923. doi: 10.1152/ajprenal.1998.274.5.F914. [PubMed] [CrossRef] [Google Scholar]

58. Van Paassen P., de Zeeuw D., Navis G., de Jong P.E. Does the renin-angiotensin system determine the renal and systemic hemodynamic response to sodium in patients with essential hypertension? Hypertension. 1996;27:202–208. doi: 10.1161/01.HYP.27.2.202. [PubMed] [CrossRef] [Google Scholar]

59. Parati G., Di Rienzo M., Bertinieri G., Pomidossi G., Casadei R., Groppelli A., Pedotti A., Zanchetti A., Mancia G. Evaluation of the baroreceptor-heart rate reflex by 24-hour intra-arterial blood pressure monitoring in humans. Hypertension. 1988;12:214–222. doi: 10.1161/01.HYP.12.2.214. [PubMed] [CrossRef] [Google Scholar]

60. Di Rienzo M., Parati G., Castiglioni P., Tordi R., Mancia G., Pedotti A. Baroreflex effectiveness index: An additional measure of baroreflex control of heart rate in daily life. Am. J. Physiol. Integr. Comp. Physiol. 2001;280:R744–R751. doi: 10.1152/ajpregu.2001.280.3.R744. [PubMed] [CrossRef] [Google Scholar]

61. Parati G., Saul J.P., Di Rienzo M., Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25:1276–1286. doi: 10.1161/01.HYP.25.6.1276. [PubMed] [CrossRef] [Google Scholar]

62. Campese V.M., Romoff M.S., Levitan D., Saglikes Y., Friedler R.M., Massry S.G. Abnormal relationship between sodium intake and sympathetic nervous system activity in salt-sensitive patients with essential hypertension. Kidney Int. 1982;21:371–378. doi: 10.1038/ki.1982.32. [PubMed] [CrossRef] [Google Scholar]

63. Mark A., Mancia G. Cardiopulmonary baroreflexes in humans. In: Shepherd J.T., Abboud F.M., editors. Handbook of Physiology. The Cardiovascular System. American Physiological Society; Bethesda, MD, USA: 1983. pp. 795–813. [Google Scholar]

64. Mancia G., Parati G., Pomidossi G., Casadei R., Di Rienzo M., Zanchetti A. Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension. 1986;8:147–153. doi: 10.1161/01.HYP.8.2.147. [PubMed] [CrossRef] [Google Scholar]

65. Parlow J., Viale J.P., Annat G., Hughson R., Quintin L. Spontaneous cardiac baroreflex in humans. Comparison with drug-induced responses. Hypertension. 1995;25:1058–1068. doi: 10.1161/01.HYP.25.5.1058. [PubMed] [CrossRef] [Google Scholar]

66. Eckberg D.L., Drabinsky M., Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N. Engl. J. Med. 1971;285:877–883. doi: 10.1056/NEJM197110142851602. [PubMed] [CrossRef] [Google Scholar]

67. Pagani M., Somers V., Furlan R., Dell’Orto S., Conway J., Baselli G., Cerutti S., Sleight P., Malliani A. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension. 1988;12:600–610. doi: 10.1161/01.HYP.12.6.600. [PubMed] [CrossRef] [Google Scholar]

68. Berntson G.G., Bigger J.T., Jr., Eckberg D.L., Grossman P., Kaufmann P.G., Malik M., Nagaraja H.N., Porges S.W., Saul J.P., Stone P.H., et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology. 1997;34:623–648. doi: 10.1111/j.1469-8986.1997.tb02140.x. [PubMed] [CrossRef] [Google Scholar]

69. Hansen-Smith F.M., Morris L.W., Greene A.S., Lombard J.H. Rapid microvessel rarefaction with elevated salt intake and reduced renal mass hypertension in rats. Circ. Res. 1996;79:324–330. doi: 10.1161/01.RES.79.2.324. [PubMed] [CrossRef] [Google Scholar]

70. Frisbee J.C., Lombard J.H. Development and reversibility of altered skeletal muscle arteriolar structure and reactivity with high salt diet and reduced renal mass hypertension. Microcirculation. 1999;6:215–225. doi: 10.1080/725310756. [PubMed] [CrossRef] [Google Scholar]

71. Zhu J., Drenjancevic-Peric I., McEwen S., Friesema J., Schulta D., Yu M., Roman R.J., Lombard J.H. Role of superoxide and angiotensin II suppression in salt-induced changes in endothelial Ca2+ signaling and NO production in rat aorta. Am. J. Physiol. Heart Circ. Physiol. 2006;291:H929–H938. doi: 10.1152/ajpheart.00692.2005. [PubMed] [CrossRef] [Google Scholar]

72. Wang J., Roman R.J., Falck J.R., de la Cruz L., Lombard J.H. Effects of high-salt diet on CYP450-4A omega-hydroxylase expression and active tone in mesenteric resistance arteries. Am. J. Physiol. Heart Circ. Physiol. 2005;288:H1557–H1565. doi: 10.1152/ajpheart.00755.2004. [PubMed] [CrossRef] [Google Scholar]

73. Lukaszewicz K.M., Falck J.R., Manthati V.L., Lombard J.H. Introgression of Brown Norway CYP4A genes on to the Dahl salt-sensitive background restores vascular function in SS-5(BN) consomic rats. Clin. Sci. 2013;124:333–342. doi: 10.1042/CS20120232. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Abularrage C.J., Sidawy A.N., Aidinian G., Singh N., Weiswasser J.M., Arora S. Evaluation of the microcirculation in vascular disease. J. Vasc. Surg. 2005;42:574–581. doi: 10.1016/j.jvs.2005.05.019. [PubMed] [CrossRef] [Google Scholar]

75. Tzemos N., Lim P.O., Wong S., Struthers A.D., MacDonald T.M. Adverse cardiovascular effects of acute salt loading in young normotensive individuals. Hypertension. 2008;51:1525–1530. doi: 10.1161/HYPERTENSIONAHA.108.109868. [PubMed] [CrossRef] [Google Scholar]

76. Greaney J.L., DuPont J.J., Lennon-Edwards S.L., Sanders P.W., Edwards D.G., Farquhar W.B. Dietary sodium loading impairs microvascular function independent of blood pressure in humans: Role of oxidative stress. J. Physiol. 2012;590:5519–5528. doi: 10.1113/jphysiol.2012.236992. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Cavka A., Jukic I., Ali M., Goslawski M., Bian J.T., Wang E., Drenjancevic I., Phillips S.A. Short-term high salt intake reduces brachial artery and microvascular function in the absence of changes in blood pressure. J. Hypertens. 2016;34:676–684. doi: 10.1097/HJH.0000000000000852. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Rorije N.M.G., Olde Engberink R.H.G., Chahid Y., van Vlies N., van Straalen J.P., van den Born B.H., Verberne H.J., Vogt L. Microvascular permeability after an acute and chronic salt load in healthy subjects: A randomized open-label crossover intervention study. Anesthesiology. 2018;128:352–360. doi: 10.1097/ALN.0000000000001989. [PubMed] [CrossRef] [Google Scholar]

79. Schmidlin O., Sebastian A.F., Morris R.C., Jr. What initiates the pressor effect of salt in salt-sensitive humans? Observations in normotensive blacks. Hypertension. 2007;49:1032–1039. doi: 10.1161/HYPERTENSIONAHA.106.084640. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Jablonski K.L., Racine M.L., Geolfos C.J., Gates P.E., Chonchol M., McQueen M.B., Seals D.R. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure. J. Am. Coll. Cardiol. 2013;61:335–343. doi: 10.1016/j.jacc.2012.09.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Kopp C., Linz P., Dahlmann A., Hammon M., Jantsch J., Muller D.N., Schmieder R.E., Cavallaro A., Eckardt K.U., Uder M., et al. 23Na magnetic resonance imaging-determined tissue sodium in healthy subjects and hypertensive patients. Hypertension. 2013;61:635–640. doi: 10.1161/HYPERTENSIONAHA.111.00566. [PubMed] [CrossRef] [Google Scholar]

82. Nijst P., Verbrugge F.H., Grieten L., Dupont M., Steels P., Tang W.H.W., Mullens W. The pathophysiological role of interstitial sodium in heart failure. J. Am. Coll. Cardiol. 2015;65:378–388. doi: 10.1016/j.jacc.2014.11.025. [PubMed] [CrossRef] [Google Scholar]

83. Selvarajah V., Connolly K., McEniery C., Wilkinson I. Skin sodium and hypertension: A paradigm shift? Curr. Hypertens. Rep. 2018;20:94. doi: 10.1007/s11906-018-0892-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Titze J., Krause H., Hecht H., Dietsch P., Rittweger J., Lang R., Kirsch K.A., Hilgers K.F. Reduced osmotically inactive Na storage capacity and hypertension in the Dahl model. Am. J. Physiol. Physiol. 2002;283:F134–F141. doi: 10.1152/ajprenal.00323.2001. [PubMed] [CrossRef] [Google Scholar]

85. Titze J., Lang R., Ilies C., Schwind K.H., Kirsch K.A., Dietsch P., Luft F.C., Hilgers K.F. Osmotically inactive skin Na+ storage in rats. Am. J. Physiol. Physiol. 2003;285:F1108–F1117. doi: 10.1152/ajprenal.00200.2003. [PubMed] [CrossRef] [Google Scholar]

86. Titze J., Shakibaei M., Schafflhuber M., Schulze-Tanzil G., Porst M., Schwind K.H., Dietsch P., Hilgers K.F. Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am. J. Physiol. Heart Circ. Physiol. 2004;287:H203–H208. doi: 10.1152/ajpheart.01237.2003. [PubMed] [CrossRef] [Google Scholar]

87. Machnik A., Neuhofer W., Jantsch J., Dahlmann A., Tammela T., Machura K., Park J.K., Beck F.X., Muller D.N., Derer W., et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med. 2009;15:545–552. doi: 10.1038/nm.1960. [PubMed] [CrossRef] [Google Scholar]

88. Wiig H., Schroder A., Neuhofer W., Jantsch J., Kopp C., Karlsen T.V., Boschmann M., Goss J., Bry M., Rakova N., et al. Immune cells control skin lymphatic electrolyte homeostasis and blood pressure. J. Clin. Investig. 2013;123:2803–2815. doi: 10.1172/JCI60113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. Machnik A., Dahlmann A., Kopp C., Goss J., Wagner H., van Rooijen N., Eckardt K.U., Muller D.N., Park J.K., Luft F.C., et al. Mononuclear phagocyte system depletion blocks interstitial tonicity-responsive enhancer binding protein/vascular endothelial growth factor C expression and induces salt-sensitive hypertension in rats. Hypertension. 2010;55:755–761. doi: 10.1161/HYPERTENSIONAHA.109.143339. [PubMed] [CrossRef] [Google Scholar]

90. He F.J., Marciniak M., Markandu N.D., Antonios T.F., MacGregor G.A. Effect of modest salt reduction on skin capillary rarefaction in white, black, and Asian individuals with mild hypertension. Hypertension. 2010;56:253–259. doi: 10.1161/HYPERTENSIONAHA.110.155747. [PubMed] [CrossRef] [Google Scholar]

91. Helle F., Karlsen T.V., Tenstad O., Titze J., Wiig H. High-salt diet increases hormonal sensitivity in skin pre-capillary resistance vessels. Acta Physiol. 2013;207:577–581. doi: 10.1111/apha.12049. [PubMed] [CrossRef] [Google Scholar]

92. Zhu Q., Hu J., Han W.Q., Zhang F., Li P.L., Wang Z., Li N. Silencing of HIF prolyl-hydroxylase 2 gene in the renal medulla attenuates salt-sensitive hypertension in Dahl S rats. Am. J. Hypertens. 2014;27:107–113. doi: 10.1093/ajh/hpt207. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Safar M., Laurent S., Safavian A., Pannier B., Asmar R. Sodium and large arteries in hypertension. Effects of indapamide. Am. J. Med. 1988;84:15–19. doi: 10.1016/0002-9343(88)90807-8. [PubMed] [CrossRef] [Google Scholar]

94. Blaustein M.P. Sodium ions, calcium ions, blood pressure regulation, and hypertension: A reassessment and a hypothesis. Am. J. Physiol. 1977;232:C165–C173. doi: 10.1152/ajpcell.1977.232.5.C165. [PubMed] [CrossRef] [Google Scholar]

95. Avolio A.P., Deng F.Q., Li W.Q., Luo Y.F., Huang Z.D., Xing L.F., O’Rourke M.F. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: Comparison between urban and rural communities in China. Circulation. 1985;71:202–210. doi: 10.1161/01.CIR.71.2.202. [PubMed] [CrossRef] [Google Scholar]

96. Avolio A.P., Clyde K.M., Beard T.C., Cooke H.M., Ho K.K., O’Rourke M.F. Improved arterial distensibility in normotensive subjects on a low salt diet. Arteriosclerosis. 1986;6:166–169. doi: 10.1161/01.ATV.6.2.166. [PubMed] [CrossRef] [Google Scholar]

97. Todd A.S., Macginley R.J., Schollum J.B., Johnson R.J., Williams S.M., Sutherland W.H., Mann J.I., Walker R.J. Dietary salt loading impairs arterial vascular reactivity. Am. J. Clin. Nutr. 2010;91:557–564. doi: 10.3945/ajcn.2009.28645. [PubMed] [CrossRef] [Google Scholar]

98. McMahon E.J., Bauer J.D., Hawley C.M., Isbel N.M., Stowasser M., Johnson D.W., Campbell K.L. A randomized trial of dietary sodium restriction in CKD. J. Am. Soc. Nephrol. 2013;24:2096–2103. doi: 10.1681/ASN.2013030285. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Jablonski K.L., Fedorova O.V., Racine M.L., Geolfos C.J., Gates P.E., Chonchol M., Fleenor B.S., Lakatta E.G., Bagrov A.Y., Seals D.R. Dietary sodium restriction and association with urinary marinobufagenin, blood pressure, and aortic stiffness. Clin. J. Am. Soc. Nephrol. 2013;8:1952–1959. doi: 10.2215/CJN.00900113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. He F.J., Marciniak M., Visagie E., Markandu N.D., Anand V., Dalton R.N., MacGregor G.A. Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and Asian mild hypertensives. Hypertension. 2009;54:482–488. doi: 10.1161/HYPERTENSIONAHA.109.133223. [PubMed] [CrossRef] [Google Scholar]

101. Todd A.S., Macginley R.J., Schollum J.B., Williams S.M., Sutherland W.H., Mann J.I., Walker R.J. Dietary sodium loading in normotensive healthy volunteers does not increase arterial vascular reactivity or blood pressure. Nephrology. 2012;17:249–256. doi: 10.1111/j.1440-1797.2011.01550.x. [PubMed] [CrossRef] [Google Scholar]

102. Dickinson K.M., Keogh J.B., Clifton P.M. Effects of a low-salt diet on flow-mediated dilatation in humans. Am. J. Clin. Nutr. 2009;89:485–490. doi: 10.3945/ajcn.2008.26856. [PubMed] [CrossRef] [Google Scholar]

103. Dickinson K.M., Clifton P.M., Keogh J.B. A reduction of 3 g/day from a usual 9 g/day salt diet improves endothelial function and decreases endothelin-1 in a randomised cross_over study in normotensive overweight and obese subjects. Atherosclerosis. 2014;233:32–38. doi: 10.1016/j.atherosclerosis.2013.11.078. [PubMed] [CrossRef] [Google Scholar]

104. Van der Graaf A.M., Paauw N.D., Toering T.J., Feelisch M., Faas M.M., Sutton T.R., Minnion M., Lefrandt J.D., Scherjon S.A., Franx A., et al. Impaired sodium-dependent adaptation of arterial stiffness in formerly preeclamptic women: The RETAP-vascular study. Am. J. Physiol. Heart Circ. Physiol. 2016;310:H1827–H1833. doi: 10.1152/ajpheart.00010.2016. [PubMed] [CrossRef] [Google Scholar]

105. Suckling R.J., He F.J., Markandu N.D., MacGregor G.A. Modest salt reduction lowers blood pressure and albumin excretion in impaired glucose tolerance and type 2 diabetes mellitus: A randomized double-blind trial. Hypertension. 2016;67:1189–1195. doi: 10.1161/HYPERTENSIONAHA.115.06637. [PubMed] [CrossRef] [Google Scholar]

106. Gijsbers L., Dower J.I., Mensink M., Siebelink E., Bakker S.J., Geleijnse J.M. Effects of sodium and potassium supplementation on blood pressure and arterial stiffness: A fully controlled dietary intervention study. J. Hum. Hypertens. 2015;29:592–598. doi: 10.1038/jhh.2015.3. [PubMed] [CrossRef] [Google Scholar]

107. Pimenta E., Gaddam K.K., Oparil S., Aban I., Husain S., Dell’Italia L.J., Calhoun D.A. Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: Results from a randomized trial. Hypertension. 2009;54:475–481. doi: 10.1161/HYPERTENSIONAHA.109.131235. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. D’Elia L., Galletti F., La Fata E., Sabino P., Strazzullo P. Effect of dietary sodium restriction on arterial stiffness: Systematic review and meta-analysis of the randomized controlled trials. J. Hypertens. 2018;36:734–743. doi: 10.1097/HJH.0000000000001604. [PubMed] [CrossRef] [Google Scholar]

109. Salvi P., Palombo C., Salvi G.M., Labat C., Parati G., Benetos A. Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity. J. Appl. Physiol. 2013;115:1610–1617. doi: 10.1152/japplphysiol.00475.2013. [PubMed] [CrossRef] [Google Scholar]

110. Salvi P. Pulse Waves. How Vascular Hemodynamics Affects Blood Pressure. 2nd ed. Springer Nature; Heidelberg, Germany: 2017. [Google Scholar]

111. Matrougui K., Schiavi P., Guez D., Henrion D. High sodium intake decreases pressure-induced (myogenic) tone and flow-induced dilation in resistance arteries from hypertensive rats. Hypertension. 1998;32:176–179. doi: 10.1161/01.HYP.32.1.176. [PubMed] [CrossRef] [Google Scholar]

112. Ying W.Z., Sanders P.W. Dietary salt increases endothelial nitric oxide synthase and TGF-beta1 in rat aortic endothelium. Am. J. Physiol. 1999;277:H1293–H1298. [PubMed] [Google Scholar]

113. Edwards D.G., Farquhar W.B. Vascular effects of dietary salt. Curr. Opin. Nephrol. Hypertens. 2015;24:8–13. doi: 10.1097/MNH.0000000000000089. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Harvey A., Montezano A.C., Lopes R.A., Rios F., Touyz R.M. Vascular fibrosis in aging and hypertension: Molecular mechanisms and clinical implications. Can. J. Cardiol. 2016;32:659–668. doi: 10.1016/j.cjca.2016.02.070. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

115. Wang M., Zhao D., Spinetti G., Zhang J., Jiang L.Q., Pintus G., Monticone R., Lakatta E.G. Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type II receptor signaling within the aged arterial wall. Arter. Thromb. Vasc. Biol. 2006;26:1503–1509. doi: 10.1161/01.ATV.0000225777.58488.f2. [PubMed] [CrossRef] [Google Scholar]

116. Duncan M.R., Frazier K.S., Abramson S., Williams S., Klapper H., Huang X., Grotendorst G.R. Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: Down-regulation by cAMP. FASEB J. 1999;13:1774–1786. doi: 10.1096/fasebj.13.13.1774. [PubMed] [CrossRef] [Google Scholar]

117. Safar M.E., Thuilliez C., Richard V., Benetos A. Pressure-independent contribution of sodium to large artery structure and function in hypertension. Cardiovasc. Res. 2000;46:269–276. doi: 10.1016/S0008-6363(99)00426-5. [PubMed] [CrossRef] [Google Scholar]

118. Prakobwong S., Yongvanit P., Hiraku Y., Pairojkul C., Sithithaworn P., Pinlaor P., Pinlaor S. Involvement of MMP-9 in peribiliary fibrosis and cholangiocarcinogenesis via Rac1-dependent DNA damage in a hamster model. Int. J. Cancer. 2010;127:2576–2587. doi: 10.1002/ijc.25266. [PubMed] [CrossRef] [Google Scholar]

119. Newby A.C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 2005;85:1–31. doi: 10.1152/physrev.00048.2003. [PubMed] [CrossRef] [Google Scholar]

120. Wang M., Kim S.H., Monticone R.E., Lakatta E.G. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension. 2015;65:698–703. doi: 10.1161/HYPERTENSIONAHA.114.03618. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Pons M., Cousins S.W., Alcazar O., Striker G.E., Marin-Castano M.E. Angiotensin II-induced MMP-2 activity and MMP-14 and basigin protein expression are mediated via the angiotensin II receptor type 1-mitogen-activated protein kinase 1 pathway in retinal pigment epithelium: Implications for age-related macular degeneration. Am. J. Pathol. 2011;178:2665–2681. doi: 10.1016/j.ajpath.2011.02.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Savoia C., Touyz R.M., Amiri F., Schiffrin E.L. Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension. 2008;51:432–439. doi: 10.1161/HYPERTENSIONAHA.107.103267. [PubMed] [CrossRef] [Google Scholar]

123. Wang D.H., Du Y. Regulation of vascular type 1 angiotensin II receptor in hypertension and sodium loading: Role of angiotensin II. J. Hypertens. 1998;16:467–475. doi: 10.1097/00004872-199816040-00008. [PubMed] [CrossRef] [Google Scholar]

124. Benetos A., Gautier S., Ricard S., Topouchian J., Asmar R., Poirier O., Larosa E., Guize L., Safar M., Soubrier F., et al. Influence of angiotensin-converting enzyme and angiotensin II type 1 receptor gene polymorphisms on aortic stiffness in normotensive and hypertensive patients. Circulation. 1996;94:698–703. doi: 10.1161/01.CIR.94.4.698. [PubMed] [CrossRef] [Google Scholar]

125. Pojoga L., Gautier S., Blanc H., Guyene T.T., Poirier O., Cambien F., Benetos A. Genetic determination of plasma aldosterone levels in essential hypertension. Am. J. Hypertens. 1998;11:856–860. doi: 10.1016/S0895-7061(98)00048-X. [PubMed] [CrossRef] [Google Scholar]

126. Mercier N., Labat C., Louis H., Cattan V., Benetos A., Safar M.E., Lacolley P. Sodium, arterial stiffness, and cardiovascular mortality in hypertensive rats. Am. J. Hypertens. 2007;20:319–325. doi: 10.1016/j.amjhyper.2006.09.002. [PubMed] [CrossRef] [Google Scholar]

127. Safar M.E., Temmar M., Kakou A., Lacolley P., Thornton S.N. Sodium intake and vascular stiffness in hypertension. Hypertension. 2009;54:203–209. doi: 10.1161/HYPERTENSIONAHA.109.129585. [PubMed] [CrossRef] [Google Scholar]

Can salt raise your blood pressure immediately?

Your digestive time frame depends on what else you have eaten and how quickly your stomach empties its food contents into your colon. At that juncture, the sodium element fulfills its metabolic role in fluid balance, immediately raising your blood pressure as a side effect.

How much does salt affect blood pressure?

The body needs a small amount of sodium to function, but most Americans consume too much sodium. High sodium consumption can raise blood pressure, and high blood pressure is a major risk factor for heart disease and stroke. Most of the sodium we consume is in the form of salt.

How do I lower my blood pressure after eating salty food?

To compensate for a high salt meal, try drinking more water, eating potassium-rich foods, and reducing your salt intake at other meals.